• Users Online: 268
  • Print this page
  • Email this page
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Most popular articles (Since December 21, 2017)

  Archives   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Effects of short and long term electromagnetic fields exposure on the human hippocampus
Omur Gulsum Deniz, Suleyman Kaplan, Mustafa Bekir Selçuk, Murat Terzi, Gamze Altun, Kıymet Kübra Yurt, Kerim Aslan, Devra Davis
October-December 2017, 5(4):191-197
DOI:10.1016/j.jmau.2017.07.001  PMID:30023254
The increasing use of mobile phones may have a number of physiological and psychological effects on human health. Many animal and human studies have reported various effects on the central nervous system and cognitive performance from of exposure to electromagnetic fields (EMF) emitted by mobile phones. The aim of the present study was to evaluate the effects of mobile phones on the morphology of the human brain and on cognitive performance using stereological and spectroscopic methods and neurocognitive tests. Sixty healthy female medical school students aged 18–25 years were divided into a low exposure group (30 subjects, <30 min daily use by the head) and high exposure group (30 subjects, >90 min daily use by the head). Magnetic resonance images (MRI) of the brain analysed on OsiriX 3.2.1 workstation. Neuropsychological tests were performed for each subject. In addition, three dominant specific metabolites were analysed, choline at 3.21 ppm, creatine at 3.04 ppm and N-acetyl aspartate at 2.02 ppm. Analysis of the spectroscopic results revealed no significant difference in specific metabolites between the groups (p > 0.05). There was also no significant difference in terms of hippocampal volume between the groups (p > 0.05). In contrast, the results of the stroop and digit span (backward) neurocognitive tests of high exposure group for evaluating attention were significantly poorer from low exposure group (p < 0.05). Based on these results, we conclude that a lack of attention and concentration may occur in subjects who talk on mobile phones for longer times, compared to those who use phones relatively less.
  1,967 115 4
Protective effects of melatonin and omega-3 on the hippocampus and the cerebellum of adult Wistar albino rats exposed to electromagnetic fields
Gamze Altun, Suleyman Kaplan, Omur Gulsum Deniz, Suleyman Emre Kocacan, Sinan Canan, Devra Davis, Cafer Marangoz
October-December 2017, 5(4):230-241
DOI:10.1016/j.jmau.2017.05.006  PMID:30023259
The purpose of the study was to investigate the effects of pulsed digital electromagnetic radiation emitted by mobile phones on the central nervous system of the adult Wistar albino rats. The study evaluated structural and functional impacts of four treatment arms: electromagnetic field (EMF) exposed; EMF exposed + melatonin treated group (EMF + Mel); EMF exposed + omega-3 (ω3) treated group (EMF + ω3); and control group (Cont). The 12-weeks-old rats were exposed to 900 MHz EMF for 60 min/day (4:00–5:00 p.m.) for 15 days. Stereological, biochemical and electrophysiological techniques were applied to evaluate protective effects of Mel and ω3. Significant cell loss in the CA1 and CA2 regions of hippocampus were observed in the EMF compared to other groups (p < 0.01). In the CA3 region of the EMF + ω3, a significant cell increase was found compared to other groups (p < 0.01). Granular cell loss was observed in the dentate gyrus of the EMF compared to the Cont (p < 0.01). EMF + ω3 has more granular cells in the cerebellum than the Cont, EMF + Mel (p < 0.01). Significant Purkinje cell loss was found in the cerebellum of EMF group compared to the other (p < 0.01). EMF + Mel and EMF + ω3 showed the same protection compared to the Cont (p > 0.05). The passive avoidance test showed that entrance latency into the dark compartment was significantly shorter in the EMF (p < 0.05). Additionally, EMF had a higher serum enzyme activity than the other groups (p < 0.01). In conclusion, our analyses confirm that EMF may lead to cellular damage in the hippocampus and the cerebellum, and that Mel and ω3 may have neuroprotective effects.
  1,715 80 2
Anti-quorum sensing natural compounds
Hani Z Asfour
January-March 2018, 6(1):1-10
DOI:10.4103/JMAU.JMAU_10_18  PMID:30023261
Increasing extent of pathogenic resistance to drugs has encouraged the seeking for new anti-virulence drugs. Many pharmacological and pharmacognostical researches are performed to identify new drugs or discover new structures for the development of novel therapeutic agents in the antibiotic treatments. Although many phytochemicals show prominent antimicrobial activity, their power lies in their anti-virulence properties. Quorum sensing (QS) is a bacterial intercellular communication mechanism, which depends on bacterial cell population density and controls the pathogenesis of many organisms by regulating gene expression, including virulence determinants. QS has become an attractive target for the development of novel anti-infective agents that do not rely on the use of antibiotics. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Medicinal plants offer an attractive repertoire of phytochemicals with novel microbial disease-controlling potential, due to the spectrum of secondary metabolites present in extracts, which include phenolics, quinones, flavonoids, alkaloids, terpenoids, and polyacetylenes. They have recently received considerable attention as a new source of safe and effective QS inhibitory substances. The objective of this review is to give a brief account of the research reports on the plants and natural compounds with anti-QS potential.
  1,474 299 4
Effects of electromagnetic fields exposure on the antioxidant defense system
Elfide Gizem Kivrak, Kıymet Kübra Yurt, Arife Ahsen Kaplan, Işınsu Alkan, Gamze Altun
October-December 2017, 5(4):167-176
DOI:10.1016/j.jmau.2017.07.003  PMID:30023251
Technological devices have become essential components of daily life. However, their deleterious effects on the body, particularly on the nervous system, are well known. Electromagnetic fields (EMF) have various chemical effects, including causing deterioration in large molecules in cells and imbalance in ionic equilibrium. Despite being essential for life, oxygen molecules can lead to the generation of hazardous by-products, known as reactive oxygen species (ROS), during biological reactions. These reactive oxygen species can damage cellular components such as proteins, lipids and DNA. Antioxidant defense systems exist in order to keep free radical formation under control and to prevent their harmful effects on the biological system. Free radical formation can take place in various ways, including ultraviolet light, drugs, lipid oxidation, immunological reactions, radiation, stress, smoking, alcohol and biochemical redox reactions. Oxidative stress occurs if the antioxidant defense system is unable to prevent the harmful effects of free radicals. Several studies have reported that exposure to EMF results in oxidative stress in many tissues of the body. Exposure to EMF is known to increase free radical concentrations and traceability and can affect the radical couple recombination. The purpose of this review was to highlight the impact of oxidative stress on antioxidant systems.
  1,491 170 12
Extracellular matrix remodeling in human disease
Hala Salim Sonbol
July-September 2018, 6(3):123-128
DOI:10.4103/JMAU.JMAU_4_18  PMID:30221137
The extracellular matrix (ECM) is a meshwork of proteins and carbohydrates that supports many biological structures and processes, from tissue development and elasticity to preserve the structures of entire organs. In each organ, the composition of the ECM is distinct. It is a remarkably active three-dimensional structure that is continuously undergoing remodeling to regulate tissue homeostasis. This review aims to explain the role of ECM proteins in the remodeling process in different types of disease. The hardening of the ECM (desmoplasia), as well as its manipulation, induction, and impairment in regulation of its composition can play a role in several diseases, examples of which are chronic obstructive pulmonary disease, pancreatic ductal adenocarcinoma, spinal cord injury, progression and metastasis of breast cancer, and neurodegenerative condition in the brain such as Alzheimer's disease. Remodeling is also associated with diet-induced insulin resistance in many metabolic tissues. A greater comprehension of the way in which the ECM regulates organ structure and function and of how ECM remodeling affects the development of diseases may lead to the improvement and discovery of new treatments.
  1,105 279 3
Why children absorb more microwave radiation than adults: The consequences
L Lloyd Morgan, Santosh Kesari, Devra Lee Davis
October-December 2014, 2(4):197-204
Computer simulation using MRI scans of children is the only possible way to determine the microwave radiation (MWR) absorbed in specific tissues in children. Children absorb more MWR than adults because their brain tissues are more absorbent, their skulls are thinner and their relative size is smaller. MWR from wireless devices has been declared a possible human carcinogen. Children are at greater risk than adults when exposed to any carcinogen. Because the average latency time between first exposure and diagnosis of a tumor can be decades, tumors induced in children may not be diagnosed until well into adulthood. The fetus is particularly vulnerable to MWR. MWR exposure can result in degeneration of the protective myelin sheath that surrounds brain neurons. MWR-emitting toys are being sold for use by young infants and toddlers. Digital dementia has been reported in school age children. A case study has shown when cellphones are placed in teenage girls’ bras multiple primary breast cancer develop beneath where the phones are placed. MWR exposure limits have remained unchanged for 19 years. All manufacturers of smartphones have warnings which describe the minimum distance at which phone must be kept away from users in order to not exceed the present legal limits for exposure to MWR. The exposure limit for laptop computers and tablets is set when devices are tested 20 cm away from the body. Belgium, France, India and other technologically sophisticated governments are passing laws and/or issuing warnings about children’s use of wireless devices.
  1,209 89 17
Histological, immunohistochemical, and biochemical study of experimentally induced fatty liver in adult male albino rat and the possible protective role of pomegranate
Nadia F Hassan, Gehan M Soliman, Ebtsam F Okasha, Amany M Shalaby
January-March 2018, 6(1):44-55
DOI:10.4103/JMAU.JMAU_5_18  PMID:30023266
Nonalcoholic fatty liver disease is a major health problem and is considered the most common worldwide liver disease. Pomegranate has many biological activities and could modify the risk of hypercholesterolemia. The objective of the current research was to study the histological changes of experimentally induced fatty liver and possible protection by pomegranate. For this purpose, 50 adult male albino rats were divided into four groups, control group, pomegranate treated group that were given pomegranate juice for six weeks, fatty liver induced group that were fed on high fat diet for six weeks and protective group that were fed on high fat diet and received pomegranate juice for six weeks. Histological changes were detected in the fatty liver induced group in the form of disturbed hepatic architecture, dilatation and congestion of central veins, blood sinusoids and portal veins. Most of hepatocytes showed variable degrees of cytoplasmic vacuolation, mitochondrial structural changes, dilatation of endoplasmic reticulum in addition to nuclear structural changes like condensed chromatin, irregular shrunken nuclei and vacuolated nuclei. All these changes were associated with inflammatory cellular infiltrations, deposition of collagen fibers around the central vein, blood sinusoids, portal areas and in between the hepatocytes in addition to significant increase in number of hepatic stellate cells that was proved by electron microscope and confirmed by immunohistochemical study. Moreover, these structural changes were much less pronounced in animals treated with pomegranate either with or before receiving high fat diet. These findings suggested that pomegranate has a protective effect against experimentally induced fatty liver.
  1,128 147 -
The effect of manganese on the olfactory bulb of adult male albino rat and the role of meloxicam: A histological and immunohistochemical study
Amany M Mousa, Amal A Shehab
January-March 2015, 3(1):8-18
DOI:10.1016/j.jmau.2014.11.002  PMID:30023176
Manganese (Mn) is an essential metal commonly found in the environment and is used for industrial purposes. Exposure to excessively high Mn levels may induce neurotoxicity referred to as manganism. This work was conducted to study the effect of manganese on the olfactory bulb of adult male albino rat and the possible protective role of meloxicam. Forty adult male albino rats were equally divided into four groups: control group, meloxicam-treated group (5 mg/kg/day orally for 4 weeks), MnCl2-treated group (10 mg/kg/day orally for 4 weeks), and the fourth group received both meloxicam and MnCl2 at the same doses and duration. Specimens of the olfactory bulbs were prepared for light and electron microscopy. An immunohistochemical study with a quantitative morphometry was performed using antibodies against glial fibrillary acidic protein (GFAP). The control group and meloxicam-treated group showed the same normal structure. MnCl2-treated group showed shrinkage of mitral nerve cells with dark peripheral nuclei as well as disorganization of mitral and granule nerve cells. The surrounding neuropil showed vacuolar spaces. Ultrastructurally, the mitral cells showed accumulation of lysosomes, swelling of mitochondria and irregularity of the nuclei. The nerve fibers contained swollen mitochondria with splitting and irregularity of the surrounding myelin sheaths. GFAP immunoreaction showed a highly significant increase compared to control group. On the other hand, the group that received both meloxicam and MnCl2 showed less marked histological changes. It was concluded that manganese induced structural changes in the olfactory bulb of albino rat that were ameliorated by concomitant use of meloxicam.
  1,196 55 1
The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer
Ayman Zaky Elsamanoudy, Moustafa Ahmed Mohamed Neamat-Allah, Fatma Azzahra’ Hisham Mohammad, Mohammed Hassanien, Hoda Ahmed Nada
July-September 2016, 4(3):115-122
DOI:10.1016/j.jmau.2016.02.002  PMID:30023217
Nutrition has a predominant and recognizable role in health management. Nutrigenetics is the science that identifies and characterizes gene variants associated with differential response to nutrients and relating this variation to variable disease states especially cancer. This arises from the epidemiological fact that cancer accounts for a high proportion of total morbidity and mortality in adults throughout the world. There is much evidence to support that genetic factors play a key role in the development of cancer; these genetic factors such as DNA instability and gene alterations are affected by nutrition. Nutrition may also lead to aberrant DNA methylation, which in turn contributes to carcinogenesis. The aim of this work is to clarify the basic knowledge about the vital role of nutrition-related genes in various disease states, especially cancer, and to identify nutrigenetics as a new concept that could highlight the relation between nutrition and gene expression. This may help to understand the mechanism and pathogenesis of cancer. The cause of cancer is a complex interplay mechanism of genetic and environmental factors. Dietary nutrient intake is an essential environmental factor and there is a marked variation in cancer development with the same dietary intake between individuals. This could be explained by the variation in their genetic polymorphisms, which leads to emergence of the concept of nutrigenomics and nutrigenetics.
  1,112 89 7
Histological and ultrastructure study of the testes of acrylamide exposed adult male albino rat and evaluation of the possible protective effect of Vitamin E intake
Nawal Awad Hasanin, Nazik Mahmoud Sayed, Fatma Mohammed Ghoneim, Sara Ahmed Al-Sherief
January-March 2018, 6(1):23-34
DOI:10.4103/JMAU.JMAU_7_18  PMID:30023264
Acrylamide (AA) is a hazardous unavoidable gonadal toxin. Hence, the aim of this study is to clarify its harmful effects on the testis of adult albino rat by light and electron microscope and to evaluate the possible role of Vitamin E (Vit E) in the prevention of such effects. Thirty-five adult male albino rats were enrolled in this study. They were divided into three groups: Group I (control); Group II (AA exposed), and Group III (AA and concomitant Vit E treated group). Animals of Groups II and III were further subdivided into two equal subgroups (each subgroup included five rats): (a) rats were sacrificed after 4 weeks and (b) rats were sacrificed after 6 weeks. The testes of each rat were dissected out, processed, and examined by Hematoxylin and Eosin, Periodic acid–Schiff and Mallory's trichrome stains as well as electron microscopic study. The study revealed that AA induces testicular damage at the histological and ultrastructural level in the form of degeneration and arrested spermatogenesis. Moreover, decreased seminiferous tubules diameters and epithelial height were detected. These changes are maximally improved in Vit E treated group. Hence, we could conclude that AA causes degenerative changes of the testes of albino rats and arrest of spermatogenesis. The AA-induced histological and ultrastructural changes of the testes could be explained by oxidative stress. These effects changes are proportional to the duration of exposure. Moreover, it could be concluded that Vitamin E has a protective role against AA-induced testicular damage by its antioxidant and anti-apoptotic effects.
  1,018 165 -
Ethics in medical research
Salman Yousuf Guraya, N.J.M. London, Shaista Salman Guraya
July-September 2014, 2(3):121-126
Ethics, an essential dimension of human research, is considered both as discipline and practice. For clinical research, ethically justified criteria for the design, conduct, and review of clinical investigation can be identified by obligations to both the researcher and human subject. Informed consent, confidentiality, privacy, privileged communication, and respect and responsibility are key elements of ethics in research. A systematic literature search of English-language articles on Medline, ISI web of knowledge, Sciencedirect, Google scholar, the Cochrane database of evidence-based reviews, and the Database of Abstracts of Reviews of Effects was performed by connecting the Mesh terms (“ethics”, “medical research”, research ethics”, “medical education”, “research ethics principles”. The abstracts of 461 articles were reviewed for the relevancy of topic and analyzed in terms of application and validity. Out of these, 21 studies were found relevant as they concentrated principles of ethics in medical research, their practical applications, and suggested guidelines for future research. Research ethics committees must promote greater understanding of ethical issues on biomedical research. These committees function for submission, consideration, evaluation, and communication of findings. Application, research protocol, patient information leaflet and informed consent form, and any other supporting documentation are thoroughly reviewed by research ethics committees for legal and moral safety, integrity, and welfare of the research subjects.
  1,020 90 9
Histopathological and ultrastructural alterations in some organs of Oreochromis niloticus exposed to glyphosate-based herbicide, excel mera 71
Palas Samanta, Pragya Kumari, Sandipan Pal, Aloke Kumar Mukherjee, Apurba Ratan Ghosh
January-March 2018, 6(1):35-43
DOI:10.4103/JMAU.JMAU_8_18  PMID:30023265
Oreochromis niloticus was exposed to glyphosate-based herbicide Excel Mera 71 for 30 days under field and laboratory conditions to investigate the histopathological and ultrastructural responses in gill, liver, and kidney. Gill displayed degenerative changes in the pillar cells of gill epithelium, curling of secondary lamella, and appearance of globular structure in laboratory condition under light microscopy. Scanning electron microscopic (SEM) observations revealed loss of microridges, disappearance of normal array of microridges, and damage in stratified epithelial cells under both the conditions, while severe vacuolation and necrosis were prominent under transmission electron microscopic (TEM) study in the laboratory condition. In liver, excess fat deposition and acentric nuclei in the laboratory condition were prominent under light microscopic and SEM study. TEM study showed necrosis in mitochondria, cytoplasmic vacuolation, degeneration in endoplasmic reticulum (ER), and reduced amount of glycogen droplets, but under field condition, lesions were less. Kidney showed fragmented glomerulus, excessive fat deposition, and hypertrophied nuclei under light microscope, while topological study showed shrinkage of glomerulus and degenerative changes under laboratory condition. TEM study also confirmed necrosis in mitochondria, dilation and fragmentation of ER, and appearance of severe vacuolation in the laboratory study, but no significant alterations were observed in field under SEM and TEM study. Therefore, the present study depicts that Excel Mera 71 caused comparatively less pathological lesions under field than laboratory condition, and finally, these responses could be considered as bioindicators for toxicity study in aquatic ecosystem.
  940 136 -
Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities
Aymen A Warille, Gamze Altun, Abdalla A Elamin, Arife Ahsen Kaplan, Hamza Mohamed, Kıymet Kübra Yurt, Abubaker El Elhaj
October-December 2017, 5(4):177-184
DOI:10.1016/j.jmau.2017.09.002  PMID:30023252
This review discusses the effects of various frequencies of electromagnetic fields (EMF) on brain hormones and enzyme activity. In this context, the mechanism underlying the effects of EMF exposure on tissues generally and cellular pathway specifically has been discussed. The cell membrane plays important roles in mediating enzymatic activities as to response and reacts with extracellular environment. Alterations in the calcium signaling pathways in the cell membrane are activated in response to the effects of EMF exposure. Experimental and epidemiological studies have demonstrated that no changes occur in serum prolactin levels in humans following short-term exposure to 900 Mega Hertz (MHz) EMF emitted by mobile phones. The effects of EMF on melatonin and its metabolite, 6-sulfatoxymelatonin, in humans have also been investigated in the clinical studies to show a disturbance in metabolic activity of melatonin. In addition, although 900 MHz EMF effects on NF-κB inflammation, its effects on NF-κB are not clear.
  956 120 -
Cannabinoids for treating cardiovascular disorders: Putting together a complex puzzle
Basma Ghazi Eid
October-December 2018, 6(4):171-176
DOI:10.4103/JMAU.JMAU_42_18  PMID:30464888
Cannabinoids have been increasingly gaining attention for their therapeutic potential in treating various cardiovascular disorders. These disorders include myocardial infarction, hypertension, atherosclerosis, arrhythmias, and metabolic disorders. The aim of this review is to cover the main actions of cannabinoids on the cardiovascular system by examining the most recent advances in this field and major literature reviews. It is well recognized that the actions of cannabinoids are mediated by either cannabinoid 1 or cannabinoid 2 receptors (CB2Rs). Endocannabinoids produce a triphasic response on blood pressure, while synthetic cannabinoids show a tissue-specific and species-specific response. Blocking cannabinoid 1 receptors have been shown to be effective against cardiometabolic disorders, although this should be done peripherally. Blocking CB2Rs may be a useful way to treat atherosclerosis by affecting immune cells. The activation of CB2Rs was reported to be useful in animal studies of myocardial infarction and cardiac arrhythmia. Although cannabinoids show promising effects in animal models, this does not always translate into human studies, and therefore, extensive clinical studies are needed to truly establish their utility in treating cardiovascular disease.
  864 184 -
Breast cancer screening programs: Review of merits, demerits, and recent recommendations practiced across the world
Tajammal Abbas Shah, Shaista Salman Guraya
April-June 2017, 5(2):59-69
DOI:10.1016/j.jmau.2016.10.002  PMID:30023238
Breast cancer screening is defined as the evaluation of symptom free, otherwise healthy looking females of child bearing age or postmenopausal women for early detection of breast cancer. Screening mammography is the most common and widely practiced breast cancer screening modality across the world. The other modes of breast cancer screening being practiced across the world are: breast self-examination (BSE), clinical breast examination (CBE), digital breast tomosynthesis (DBT), ultrasonography (USG), magnetic resonance imaging (MRI), and identification of certain genetic oncogenes. The major merits of breast cancer screening programs are: early diagnosis, sorting out and prevention of risk factors, and timely treatment to lessen the morbidity (5 years localized stage survival rate is 99%, regional disease 84% while metastatic breast cancer 5 year survival rate is 23%); it also reduces overall 20% mortality rate. The major demerits of breast cancer screening are: overdiagnosis (19% from the perspective of a woman invited to screening), high cost, ionizing radiation (lifetime attributable risk to develop breast cancer is 3/10,000), false positive biopsy recommendation (about 8/1000), false negative results 11/10,000), and their consequences. Worldwide, most of the countries recommend biennial screening for breast cancer at 50–74 years of age. However, some countries recommend screening mammography earlier, starting at the age of 40 years until 70–74 years based on higher breast cancer incidence rate in those countries. This article provides a detailed review of merits, demerits, and recent recommendations for screening programs being practiced across the world.
  949 73 6
Presence of multidrug-resistant bacteria on mobile phones of healthcare workers accelerates the spread of nosocomial infection and Regarded as a Threat to Public Health in Bangladesh
Tonmoy Debnath, Shukanta Bhowmik, Tarequl Islam, Mohammed Mehadi Hassan Chowdhury
July-September 2018, 6(3):165-169
DOI:10.4103/JMAU.JMAU_30_18  PMID:30221143
Recently, mobile phones have become a potent vector for the transmission of pathogens. In hospitals, the use of the mobile phones by healthcare workers in an unhygienic manner accelerates the spread of nosocomial infection. We aimed to investigate the prevalence of microbiological contamination of mobile phones belonging to clinicians in Bangladesh hospitals. From 100 samples, we identified 69 isolates of bacteria including 22 Staphylococcus aureus; 11 Pseudomonas aeruginosa; 14 Escherichia coli; 6 Salmonella typhi 6 and 16 Staphylococcus epidermidis. On the basis of antibiotic susceptibility test using 11 antibiotics, it has been observed that most of the isolated bacteria became resistant to antibiotics and compared to other isolates, isolates of S. epidermidis and S. typhi were more resistant and sensitive, respectively. About 68.8% isolates showed that their resistance capacities against ampicillin but in contrast, 56.6% isolated were susceptible to imipenem. Azithromycin and imipenem against S. aureus, gentamicin against P. aeruginosa, tetracycline and imipenem against E. coli, tetracycline against S. typhi, and S. epidermidis revealed significant antimicrobial affectivity. We found that mobile phones are potential vectors to spread antibiotic-resistant nosocomial pathogens. Based on the study, an effective disinfection practice for cellular phones used in hospitals should be introduced to prevent the potential of cross-contamination.
  832 156 -
Electromagnetic field exposure and health: Microscopic, radiological and stereological studies
Süleyman Kaplan
October-December 2017, 5(4):0-0
DOI:10.1016/S2213-879X(17)30126-8  PMID:30023260
  797 130 -
Bacterial contamination of cell phones of medical students at King Abdulaziz University, Jeddah, Saudi Arabia
Shadi Zakai, Abdullah Mashat, Abdulmalik Abumohssin, Ahmad Samarkandi, Basim Almaghrabi, Hesham Barradah, Asif Jiman-Fatani
July-September 2016, 4(3):143-146
DOI:10.1016/j.jmau.2015.12.004  PMID:30023220
Cell phones are commonly used in healthcare settings for rapid communication within hospitals. Concerns have been increased about the use of these devices in hospitals, as they can be used everywhere, even in toilets. Therefore, they can be vehicles for transmitting pathogens to patients. This study aimed to examine the presence of pathogenic bacteria on the surfaces of cell phones that are used frequently by preclinical medical students. This cross-sectional study identified both pathogenic and nonpathogenic bacteria on cell phones of 105 medical students at King Abdulaziz University, Jeddah, Saudi Arabia, using standard microbiological methods. Out of 105 cell phones screened, 101 (96.2%) were contaminated with bacteria. Coagulase-negative staphylococci were the most abundant isolates (68%). Seventeen (16.2%) cell phones were found to harbor Staphylococcus aureus. Gram-positive bacilli were isolated from 20 (19%) samples. Viridans streptococci and Pantoea species were also isolated but at lower levels. Our findings indicate that cell phones can act as reservoirs of both pathogenic and nonpathogenic organisms. Therefore, full guidelines about restricting the use of cell phones in clinical environments, hand hygiene, and frequent decontamination of mobile devices are recommended at an early stage in medical schools, to limit the risk of cross-contamination and healthcare-associated infections caused by cell phones.
  853 61 5
Prostatic carcinogenesis: More insights
Eman M Saied, Hanan Alsaeid Alshenawy
January-March 2018, 6(1):11-16
DOI:10.4103/JMAU.JMAU_11_18  PMID:30023262
Background: Prostatic carcinoma ranks as the second most common malignant tumor and the fifth cause of cancer-related deaths in men. Many studies now focus on the different molecules involved in prostatic carcinogenesis. Maspin and prohibitin (PHB) are suggested to play crucial roles in the development and progression of many cancers; however, their roles in prostatic carcinogenesis have not been fully elucidated. Aim: This work was designed to study the immunohistochemical expression of maspin and PHB in prostatic carcinoma in comparison to their expression in benign prostatic hyperplasia (BPH) to give more insights about their roles in prostatic carcinogenesis. Materials and Methods: Archival blocks of 30 cases of prostatic adenocarcinomas and 15 cases of BPH were subjected to histopathological examination and immunohistochemical evaluation of maspin and PHB expression. Results: Maspin showed higher expression in prostatic carcinoma (88.9% of cases) compared to BPH (20% of cases). PHB expression was detected only in prostatic carcinoma (84.4% of cases), while all cases of BPH were negative. The expression of both maspin and PHB showed statistically significant increase with increasing Gleason score (P = 0.0125 and 0.0065 respectively). Conclusions: Overexpression of maspin and PHB in prostatic carcinoma reflects their vital roles in prostatic carcinogenesis. Their upregulation with increasing Gleason score indicates their prognostic significance. Moreover, PHB may differentiate between prostatic carcinoma and BPH being expressed only by malignant cells.
  799 107 -
Structural and optical properties correlated with the morphology of gold nanoparticles embedded in synthetic sapphire: A microscopy study
Maria Luisa Garcia-Betancourt, Carlos Magaña-Zavala, Alejandro Crespo-Sosa
April-June 2018, 6(2):72-82
This work reports on the electron microscopy analysis of the structure and morphology of gold nanoparticles produced by ion implantation as well as their relationship to their optical properties. Metalic nanoparticles by ion implantation are usually spherical and formed beneath the surface of a dielectric matrix. In this experiment, the matrix was sapphire. After high-energy Si ion irradiation, the gold nanoparticles were elongated into prolate spheroids. Since the nanoparticles are embedded in a dielectric matrix, secondary electron imaging in a JEOL JSM-7800F at low voltage did not allow their analysis. This work proposes an analysis using backscattered electron imaging in a field emission scanning electron microscopy at higher voltages (20 kV) to explore the morphology of the embedded nanoparticles. The samples were observed by cross-sectional view as well as a top view of the surface of the sapphire matrix for exploration and recognition of their morphology, dimensions, distribution, and composition. The analysis was extended by means of Rutherford backscattering spectrometry, X-ray diffraction, and optical extinction spectroscopy. The nanoparticles exhibited structural and optical properties correlated directly to the morphology observed by microscopy. The beam interaction with the sample and the used parameters was simulated in the CASINO code, from which the depth of exploration with distinct parameters used in microscopy analysis was estimated.
  812 89 -
Salivary sheaths of the Asian citrus psyllid show signs of degradation 3–4 weeks following their deposition into citrus leaves by the feeding psyllids
El-Desouky Ammar, David G Hall, Robert G Shatters
July-September 2018, 6(3):129-133
DOI:10.4103/JMAU.JMAU_13_18  PMID:30221138
Background: Salivary sheaths, also known as stylet sheaths or stylet tracks, are essential features of the piercing-sucking feeding mechanism of plant-feeding hemipteran insects, many of which are vectors of economically important plant viral and bacterial pathogens. Although knowledge of their structure and function is incomplete, these salivary sheaths are frequently used by researchers to study hemipteran's feeding behavior, host preference, or host resistance, because these sheaths remain in the plant tissues after the insect withdraws its stylets following its feeding or probing on these tissues. However, in most cases, it is not known how long these salivary sheaths may last in plant tissues after their deposition by the feeding insects. An earlier report suggested that the salivary sheaths of the Asian citrus psyllid, Diaphorina citri (Hemiptera, Liviidae), vector of the devastating huanglongbing (citrus greening) disease bacterium, start to dissipate 1 week after their deposition in citrus leaves. Methods and Results: Here, using epifluorescence microscopy of cross sections in citron leaves, we found that D. citri salivary sheaths show signs of degradation in 3–4 weeks and become mostly degraded by 5–6 weeks, following their deposition by the psyllids into citrus tissues. Degradation of the salivary sheath starts at or near the “flange” area close to the leaf surface and continues gradually inward through the intercellular part of the sheath, within the mesophyll tissue, but apparently does not extend to the deeper or intracellular parts of the sheath in or near the phloem. Staining citron leaf sections with the fluorescent stain calcofluor white, which stains fungi, or propidium iodide (DNA/RNA stain) suggested that the degraded parts of the older salivary sheaths are not associated with fungi or bacterial accumulations. Conclusion: We speculate that degradation of the salivary sheaths may be due to enzymatic activities in the host plant, especially in the extracellular matrix of the mesophyll tissue.
  733 117 -
More than an association: Latent toxoplasmosis might provoke a local oxidative stress that triggers the development of bipolar disorder
Mohammed A Afifi, Asif A Jiman-Fatani, Mohammed W Al-Rabia, Nabeel H Al-Hussainy, Sherif El Saadany, Wael Mayah
July-September 2018, 6(3):139-144
DOI:10.4103/JMAU.JMAU_22_18  PMID:30221140
Introduction: Toxoplasma gondii, a common parasitic infection, has a special affinity to the brain. It has a lifelong existence without an apparent clinical disease. While the etiology of bipolar disorder (BD) remains unclear, epidemiological studies suggest a role for infections. Central nervous system is particularly susceptible to oxidative stress (OS) because of its high metabolic rate and its low levels of antioxidant defenses. OS is a contributor to the initiation and progression of many neurological illnesses. OS injury is a constantly and compelling finding associated with BD and toxoplasmosis. Aim: This cross-sectional study has investigated a possible role of toxoplasma-induced OS in the development of BD. Methods: Healthy controls and BD patients were examined for anti-Toxoplasma immunoglobulin-G (IgG) and two protein (3-nitrotyrosine) and DNA (8-hydroxy-2' deoxyguanosine [8-OHdG]) OS markers. Results: Toxoplasma positivity was higher (40%) among BD patients compared to controls (12%). Significantly higher levels of anti-Toxoplasma IgG were detected in BD patients compared to controls. Nitrotyrosine (796.7 ± 106.28) and especially 8-OHdG (20.31 ± 8.38) were significantly higher among toxo-positive BD compared to toxo-negative BD (675.97 ± 144.19 and 7.44 ± 2.86) and healthy controls (464.02 ± 134.6 and 4.17 ± 1.43). Conclusion: These findings might indicate a role for Toxoplasma infection in the development of BD, possibly through creating a highly oxidative brain environment.
  726 119 -
Does omega-3 have a protective effect on the rat adrenal gland exposed to 900 MHz electromagnetic fields?
Adem Kocaman, Mehmet Gül, Kıymet Kübra Yurt, Gamze Altun, Emrah Zayman, Elfide Gizem Kıvrak
October-December 2017, 5(4):185-190
DOI:10.1016/j.jmau.2017.08.003  PMID:30023253
The aim of this study was to investigate the harmful effects of exposure to 900-megahertz (MHz) electromagnetic fields (EMF) and the protective effects of omega-3 (Omg-3) against EMF in the rat adrenal gland. Eighteen Wistar albino rats were randomly assigned into three groups, control (Cont), EMF, and EMF + Omg-3. The EMF and EMF + Omg-3 groups both consisted of six rats exposed to an EMF of 900 MHz for 60 min/day for 15 days. No procedure was applied to the six rats in the Cont group. At the end of the experiment, all rats were sacrificed, and the mean volumes of the cortex and medulla of the adrenal gland were estimated using a stereological counting technique. The stereological results showed that the mean volume of the adrenal gland increased significantly in the EMF-exposed groups compared to the Cont group. Additionally, the mean volume of the adrenal gland was significantly lower in the EMF + Omg-3 group compared to the EMF group. We suggest that Omg-3 therapy aimed at suppressing the effects of EMF may prove a safe alternative for animals, whether or not they are exposed to EMF.
  751 79 -
Microfabrics and microchemistry of sulfide ores from the 640 FW-E level at the Al Amar gold mine, Saudi Arabia
Adel A Surour, Rami Bakhsh
July-September 2013, 1(3):96-110
In a VMS ore at Al Amar gold mine (level 640 FW-E), sulfide minerals are paragenetically ordered as follows: pyrite(I)–sphalerite–chalcopyrite–galena–pyrite(II), deformations vary from brittle to ductile deformation fabrics. Microscopically, the massive sulfides have pyrite porphyoblasts (up to ~80%) that show evidence of creep dislocation as a result of low-temperature plastic deformation rather than brittle failure, whereas high-temperature annealment is completely lacking. Softer minerals such as chalcopyrite fill into fractures in pyrite as narrow slivers. Needle-shaped or lamellar morphology of chalcopyrite, together with the chemical composition of Fe-poor sphalerite (with maximum 0.99 wt% Fe) suggest a combined replacement–coprecipitation mechanism of chalcopyrite disease formation rather than an exsolution texture. Greenschist facies metamorphism produces an ore with distinct chalcopyrite disease into a stratified ore with microbands of chalcopyrite and sphalerite. Ore microfabrics and uncommon occurrence of epithermal stringers suggest noticeable effect of the Najd tectonics in the studied level. The EMPA analyses indicate that all sulfide minerals in the VMS ore are auriferous and the Au contents are considerable (up to 0.94, 1.31, 0.16 and 1.20wt%; in sphalerite, chalcopyrite, galena and pyrite, respectively). Gold in pyrite is “invisible” whereas it occurs as submicroscopic inclusions in sphalerite, chalcopyrite and galena. The VMS ore of Al Amar deep horizons are characterized by the occurrence of “invisible gold”, Ag-free galena, Fe- and Ni-poor sphalerite, negligible hydrothermal alteration, plastic deformation of pyrite and non-exsolution origin of the chalcopyrite disease intergrowth which are together strong indicators of low-temperature (250–300°C).
  757 47 2
Ultrastructure of the parotid salivary gland in the greater cane rats (Thryonomys Swinderianus)
Casmir O Igbokwe
January-March 2018, 6(1):17-22
DOI:10.4103/JMAU.JMAU_6_18  PMID:30023263
The parotid glands of adult male African greater cane rat (Thryonomys swinderianus) were examined by light microscopy (semi-thin sections) and transmission electron microscopy. Histologically, it consisted of acinar cells with vacuoles which corresponded to large oval electron-dense granules, intercalated, striated ducts, and myoepithelial cells which contacted the cells and intercalated ducts (IDs). The cytoplasmic organizations of acinar cells represented the features of serous secreting cells. Ultrastructurally, the acinar cells contained granules of low and moderately electron densities without substructures in their matrix. Lipid droplets were interspersed with the granules. Several coalesced low electron-dense granules were common in some of the acinar cells. The acinar cells also contained few dilated (vesicular) and abundant parallel arrays of tubular rough endoplasmic reticulum and extensive Golgi complex. IDs were lined by tall cuboidal cells interconnected by tight junctions. Secretory granules were absent in their cytoplasm. Striated ducts were composed of columnar cells with few basal cells, and secretory granules were absent as well. Apical blebbing was observed in these ducts. Myoepithelial cells were limited to the acinar-intercalated ductal system. Nerve terminals were observed among the adjacent acinar cells and the underlying basement lamina. The functional significance of these structures is discussed.
  724 72 -